Article ID: 1000-7032(2013)02-0202-05

Advance in Cu₂O-ZnO Solar Cells and Investigation of Cu₂O-ZnO Heterojunction Fabricated by Magnetron Sputtering

YANG Mei-jia, ZHU Li-ping*

(State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China) * Corresponding Author, E-mail: zlp1@ zju. edu. cn

Abstract: Cu₂O-ZnO heterojunction has shown great potential for photovoltaic application due to the low-cost, nontoxicity, abundance and variety of preparation methods. However, the resistivity of the Cu₂O film in present ZnO-Cu₂O heterojunction solar cell is relatively high, which seems to be the major problem for the low photoelectric conversion efficiency. Cu₂O films were prepared using reactive direct current magnetron sputtering. The microstructures and properties were characterized using X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Hall-effect measurements. The influences of $q_V(Ar)$: $q_V(O_2)$ on the structures and properties of deposited films were investigated. Single-phase Cu₂O film with a resistivity of 88.5 $\Omega \cdot cm$, a Hall mobility of 16.9 cm² \cdot V⁻¹ \cdot s⁻¹ and a carrier concentration of 4.19 × 10¹⁵ cm⁻³ were obtained at $q_V(Ar)$: $q_V(O_2) = 90$: 0.3. The as-deposited Cu₂O films have a great improvement in electrical performance and have more advantage in photovoltaic application compared with that prepared by electrochemical deposition or thermal oxidation. On that basis, the Cu₂O-ZnO heterojunctions were fabricated in reversed growth sequence and the band alignments of the heterojunctions were given to investigate their potential application in solar cells. Possible areas for future work in this field were outlined and some suggestions were made based on our investigation of the Cu₂O-ZnO heterojunctions fabricated by magnetron sputtering.

Key words: compound semiconductor; Cu₂O-ZnO heterojunction; solar cell; resistivity; band alignmentCLC number: 0484.4Document code: ADOI: 10.3788/fgxb20133402.0202

Cu₂O-ZnO 太阳能电池的研究进展及磁控溅射法制备 Cu₂O-ZnO 异质结的研究

杨美佳,朱丽萍*

(浙江大学材料系 硅材料国家重点实验室,浙江 杭州 310027)

摘要: Cu₂O-ZnO 异质结具有成本低廉、环境友好及制备方法多样等优点,在太阳能电池领域有很好的应用前 景。Cu₂O 薄膜的高电阻率和低载流子浓度是制约其效率提高的主要原因。本文采用磁控溅射法,在 q_v (Ar): q_v (O₂) = 90:0.3 时得到单相 p 型 Cu₂O 薄膜,电阻率为 88.5 Ω ·cm, 霍尔迁移率为 16.9 cm²·V⁻¹·s⁻¹,载

收稿日期: 2012-11-16;修订日期: 2012-12-11

基金项目:国家自然科学基金(51072181)资助项目

作者简介:杨美佳(1987-),女,河北保定人,主要从事化合物半导体光电功能材料的研究。 E-mail: meijiay@126.com, Tel: (0571)87953014

流子浓度为4.19×10¹⁵ cm⁻³。并结合 Cu₂O-ZnO 异质结能带结构的研究,对 Cu₂O-ZnO 异质结太阳能电池今后的研究提出了一些建议。

关 键 词:化合物半导体; Cu₂O-ZnO 异质结; 太阳能电池; 电阻率; 能带结构

1 Introduction

The ideal material for future photovoltaic applications should be a compromise between cost, efficiency, toxicity, relative abundance and environmental friendliness. Recently, there is renewed interest on Cu₂O with respect to solar-cell applications. Cuprous oxide(Cu₂O) is a natural p-type direct band semiconductor with a gap of 2.17 eV, good mobility and high minority carrier diffusion length. According to the Shockley-Queisser limit (SQL)^[1], it was predicted a maximum efficiency of about 20% for single junction Cu₂O solar cells, but current experimental data are only about $4\%^{[2]}$. Although there have been a few reports on Cu₂O homojunction solar $\operatorname{cells}^{[3]}$, reproducibility is not so good due to the unclear formation mechanism of n-type Cu₂O. Zinc oxide (ZnO) is an intrinsic n-type semiconductor with a direct band gap of 3.37 eV and high electron mobility. Cu₂O-ZnO heterojunction is considered promising material for photovoltaic application. In this context, we summarized the main achievements of heterojunction solar cells based on Cu₂O-ZnO during the past ten years. The high resistivity of the Cu₂O film in present ZnO-Cu₂O heterojunction solar cells seems to be the major problem for the low efficiency. In this work, we prepared Cu₂O films by magnetron sputtering in expect to improve the electrical performance, and measured the band alignments of the Cu₂O-ZnO heterojunctions in order to investigate their potential application in solar cells.

2 Fabrication Methods and Performance of Present Cu₂O-ZnO Heterojunction Solar Cells

Thus far, the Cu₂O-ZnO heterojunction has been fabricated by several methods.

2.1 Electrochemical Deposition

Electrochemical-deposition is easily scaled, inexpensive and can produce uniform films on various substrates. It is usually performed using a threeelectrode cell in aqueous electrolytes of precursors. High density of interface states resulting from the aqueous synthesis and poor minority carrier transport were identified as the factors limiting the performance of as-deposited solar cells. The electrodeposited Cu₂O-ZnO solar cells with the highest efficiency of 1.28% was fabricated by Izaki *et al.*^[4], where the polarization of the substrate seems to be very important. Electrodeposition can also be used to synthesize hexagonal Cu₂O nanotube arrays^[5], which could be interesting in fabrication of nanostructured Cu₂O-ZnO solar cells.

2.2 Thermal Oxidation/Sputtering or Plused Laser Depositon (PLD)

Cu₂O-ZnO solar cells with good performance^[6-9] are fabricated by depositing ZnO on Cu₂O sheet prepared by oxidizing Cu sheets. The typical oxidation procedure includes annealing of the Cu sheets, oxidation in air and annealing of the Cu₂O film. The purity of Cu sheets has a significant impact on the quality of the Cu₂O. A number of pre-and post-oxidation treatments involving cleaning, etching, polishing, annealing *etc.* have been suggested in the literature. ZnO films can be deposited by various methods, *e. g.*, plused laser deposition (PLD), vacuum arc plasma evaporation (VAPE), ion beam sputtering, metal-organic chemical vapor deposition (MOCVD).

2.3 Sputtering and Other Methods

Magnetron sputtering is commonly used in the preparation of thin films. However, no report on the cells fabricated from sputtered Cu₂O and ZnO can be found in the literature, which is probably attributed to the poor crystal quality of the deposited thin films. Previously, Hsueh *et al.*^[9] reported the fabrication of magnetron sputtered p-Cu₂O onto vertical n-ZnO nanowires prepared by a self-catalyzed vaporliquid-solid (VLS) method and obtained a conversion effciency of 0.1%.

A light-assisted electrodeposition of the ZnO continuous layer on the Cu₂O layer has been revealed by Fariza *et al.*^[10]. Rectification feature was observed in the constructed ZnO/Cu₂O diode, but no solar cell efficiency was reported. In some nano-structure Cu₂O-ZnO heterojunction solar cells, a novel wet chemistry route^[11] was used to synthesize Cu₂O nanoparticles and a self-catalyzed vapor-liquid-solid (VLS) method or hydrothermal method was

used to prepare ZnO nanowires.

2.4 Performance

The exploratory studies on the Cu_QO-ZnO heterojunction solar cells in the past ten years are summarized in Table 1. There are mainly three deposition techniques: electrochemical deposition, thermal oxidation and sputtering/PLD/VAPE/MOCVD. The cell structures were bilayer thin films, Cu_QO thin film on ZnO nanowires or Cu_QO nanoparticles drop-cast into ZnO nanowires, in some cases with an inserted thin buffer layer. The ZnO was either undoped or highly doped with elements Mg, Al or Ga. The efficiencies range between 0.1% and 4.08%.

Structure	Preparation methods	Solar cell performance				A .1
		$I_{\rm sc}/({\rm mA}\cdot{\rm cm}^{-2})$	$V_{\rm oc}/{\rm V}$	FF	$\eta/\%$	- Author
Cu ₂ O thin film/ZnO nanowires	Sputtering/(VLS) method	2.35	0.13	0.29	0.1	Hsueh ^[9]
Cu ₂ O/ZnO bilayer	Electrochemical deposition	1.98	0.34	0.32	0.24	Hussain ^[12]
$\rm Cu_2O$ thin film/ZnO nanowires	Electrochemical deposition	4.4	0.28	0.39	0.47	Musselman ^[13]
Cu ₂ O/ZnO: Mg bilayer	Electrochemical deposition/MOCVD	3	0.57	0.42	0.71	Duan ^[14]
Cu ₂ O/ZnO bilayer	Electrochemical deposition	3.8	0.59	0.58	1.28	Izaki ^[4]
ZnO/Cu ₂ O bilayer	VAPE/Oxidizing Cu sheet	6.94	0.41	0.53	1.52	Minami ^[6]
ZnO/Cu ₂ O bilayer	Ion beam sputtering/Oxidizing Cu sheet	6.78	0.59	0.5	2.01	Mittiga ^[7]
ZnO/Cu ₂ O bilayer	PLD/Oxidizing Cu sheet	10.1	0.69	0.55	3.83	Minami ^[8]
ZnO/Cu ₂ O bilayer	PLD/Oxidizing Cu sheet	10	0.72	0.59	4.08	Nishi ^[2]

Table 1 Solar-cell performances of various Cu₂O-ZnO heterojunctions

3 Our Work on Cu_Q-ZnO Heterojunction Fabricated by Magnetron Sputtering

As shown in Table 1, the electrochemical-deposited Cu₂O-ZnO solar cells exhibited the highest efficiency of 1. 28%, while most of the Cu₂O/ZnO solar cells with efficiency larger than 1. 5% were fabricated on Cu₂O sheet prepared by thermal oxidation method. High concentration of interface states at the heterointerface introduced by etching during device fabrication will lead to poor carrier collection in electrochemical-deposited solar cells. Other limitations in the performance include crystal orientation, grain sizes, and the minority carrier transport length. However, the resistivity of the electrodeposited Cu₂O films was reported to be $10^4 \sim 10^6 \ \Omega \cdot \ cm^{[15]}$, while

the resistivity of oxidized Cu₂O substrate was on the order of $10^3 \ \Omega \cdot cm$, which seems to be the major problem for the low efficiency. So far, there is no report on the cells fabricated from sputtered Cu₂O in the literature, although the magnetron sputtered Cu₂O film is expected to reach a resistivity lower than $10^3 \ \Omega \cdot cm$. In our work, the Cu₂O films were prepared by magnetron sputtering. The electrical properties of Cu₂O films and band alignments of the Cu₂O-ZnO heterojunctions were measured to investigate their potential application in solar cells.

3.1 Experiments

Cu Ω and ZnO films were prepared in a magnetron sputtering system with a base pressure of 10^{-3} Pa. Before deposition, the glass substrates were ultrasonically cleaned in acetone, ethanol and deionized water each for 10 min, and subsequently dried with flowing nitrogen gas. The Cu₂O films were deposited by reactive direct current (DC) magnetron sputtering using a metallic copper target (99.99%) at the substrate temperature of 400 °C in an argonoxygen (Ar-O₂) ambience. To obtain a single phase of Cu₂O, the O₂ flow rate was kept at 0.3 cm³/min, and the Ar flow rate was varied from 60 to 90 cm^3 / min with the total pressure maintained at 0.5 Pa. The ZnO films were deposited by radio frequency (RF) magnetron sputtering using a sintered ZnO target (99.99%) in pure Ar ambience. The band alignments at the interfaces of the Cu₂O/ZnO and ZnO/Cu₂O heterojunctions were investigated. Crystal structures were characterized by X-ray diffraction (XRD) using a XPERT-PRO system with a source of Cu K α ($\lambda = 0.154$ 06 nm). Electrical properties were measured by Hall measurements in Vander Pauw configuration (BIO-RAD HL5500PC) at room temperature (RT). The core-levels and valenceband (VB) spectra were measured by X-ray photoelectron spectrometer (XPS, AXIS ULTRADLD with a 1 486.6 eV Al Ka monochromatic X-ray radiation source).

3.2 Result and Discussion

Fig. 1. shows the XRD patterns for the films obtained at various $q_V(Ar)$: $q_V(O_2)$ with a sputtering pressure of 0.5 Pa. At a lower $q_V(Ar)$: $q_V(O_2)$ of 60:0.3, the films are characterized to be mixed phase of Cu_Q and Cu_O. Single phase of Cu_Q films are obtained when $q_V(Ar)$: $q_V(O_2)$ is larger than 80:0.3. As shown in Fig. 1, diffraction peaks at 36. 5°, 42. 4°, 61. 5° and 73. 7° are corresponding to the (111), (200), (220) and (311) crystal planes of

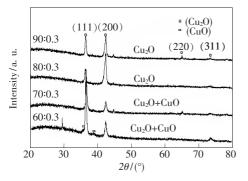


Fig. 1 XRD patterns of copper oxides films obtained at various $q_V(Ar)$: $q_V(O_2)$ ratios with the sputtering pressure of 0.5 Pa

cubic-structured Cu₂O (JCPD card No. 65-3288). We also verified the purity of the Cu₂O film which we obtained by XPS, as shown in Fig. 2. The Cu2p_{3/2} peak is fit into a single peak at a binding energy of 932.47 eV with good symmetry. No sub-peak attributed to the Cu (II) in CuO is observed, the shake-up satellite structures located at 940 ~ 945 eV that is usually appear in CuO are not seen either.

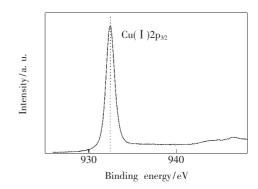


Fig. 2 The $Cu2p_{3/2}$ XPS spectrum from a single-phase Cu_2O film

The electrical properties of all copper oxides films are shown in Fig. 3. Hall measurements at RT show that all the copper oxide films are p-type with resistivities lower than 600 $\Omega \cdot \text{cm}$. The singlephase Cu₂O films deposited at $q_V(\text{Ar}):q_V(\text{O}_2) = 90$: 0.3 exhibit a resistivity of 88.5 $\Omega \cdot \text{cm}$, a Hall mobility of 16.9 cm² $\cdot \text{V}^{-1} \cdot \text{s}^{-1}$ and a carrier concentration of 4.19 × 10¹⁵ cm⁻³. The copper oxides films mixed with CuO deposited at $q_V(\text{Ar}):q_V(\text{O}_2) =$ 60: 0.3 and $q_V(\text{Ar}):q_V(\text{O}_2) = 70:$ 0.3 exhibit higher resistivity due to the decrease of carrier concentration and Hall mobility.

The actual band offsets between ZnO and Cu₂O

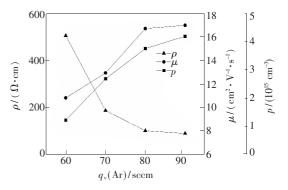


Fig. 3 Resistivity, Hall mobility and carrier concentration measured by Hall effect measurements for Cu₂O thin films deposited at various $q_{V}(Ar)$: $q_{V}(O_{2})$.

films prepared by magnetron sputtering have been investigated. Using X-ray photo-electron spectroscopy (XPS), the valence band offset (VBO) of the Cu₂O/ZnO heterojunction (where Cu₂O was deposited on ZnO) were measured to be 2.91 eV, while for $ZnO/Cu_{2}O$ (where ZnO was deposited on $Cu_{2}O$). the CBO were determined to be 2.52 eV. The schematic diagrams of the band alignments of the two kinds of heterojunctions are drawn as Fig. 4. Assuming that the Fermi level in n-ZnO is close to conduction band minimum in ZnO, and Fermi level in p-Cu₂O is close to valence band maximum in Cu₂O, the upper limit of thermodynamic open circuit voltage $(V_{\rm or})$ is estimated to be 0.46 eV for Cu₂O/ZnO and 0.85 eV for ZnO/Cu₂O, respectively. In addition, the recombination of majority carriers increases with

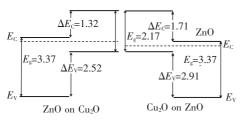


Fig. 4 Schematic diagrams of ZnO/Cu₂O and Cu₂O/ZnO heterojunctions

the increase of CBO. Therefore, considering the band alignments, the ZnO/Cu_2O structure is expected to harvest higher photovoltaic power conversion efficiency than the Cu_2O/ZnO .

4 Conclusion

In summary, we prepared Cu₂O films using direct current reactive magnetron sputtering. The $q_{y}(Ar)$: $q_{y}(O_{2})$ ratio is a crucial parameter in achieving pure phase of Cu₂O. The phase purity of the Cu₂O was observed from XRD, and confirmed by XPS. It shows that the obtained Cu₂O films have a resistivity lower than 100 Ω \cdot cm, which indicates a great improvement in electrical performance than electrochemical-deposited or thermal-oxidized Cu₂O films. Future work should be planned to lower the resistivity of the Cu₂O films by doping (N or Si) or other treatment. In addition, the measured VBO of ZnO/Cu₂O heterojunction is smaller than that of Cu₂O/ZnO heterojunction. Based on the band alignments consideration, the ZnO/Cu₂O structure is expected to have more advantage in photovoltaic application than Cu₂O/ZnO structure.

References:

- [1] Golden T D, Shumsky M G, Zhou Y, et al. Electrochemical deposition of Copper(I) oxide films [J]. Chem. Mater., 1996, 8(10):2499-2504.
- [2] Nishi Y, Miyata T, Minami T, et al. Effect of inserting a thin buffer layer on the efficiency in n-ZnO/p-Cu₂O heterojunction solar cells [J]. J. Vac. Sci. Technol. A, 2012, 30(4):04D103-1-6.
- [3] Wei H M, Gong H B, Chen L, et al. Photovoltaic effciency enhancement of Cu₂O solar cells achieved by controlling homojunction orientation and surface microstructure [J]. J. Phys. Chem. C, 2012, 116(19):10510-10515.
- [4] Izaki M, Shinagawa T, Mizuno K, et al. Electrochemically constructed p-Cu₂O/n-ZnO heterojunction diode for photovoltaic device [J]. J. Phys. D: Appl. Phys., 2007, 40(11):3326-3329.
- [5] Zhong J H, Li G R, Wang Z L, et al. Facile electrochemical synthesis of hexagonal Cu₂O nanotube arrays and their application [J]. Inorg. Chem., 2011, 50(3):757-763.
- [6] Minami T, Miyata T, Ihara K, et al. Effect of ZnO film deposition methods on the photovoltaic properties of ZnO-Cu₂O heterojunction devices [J]. Thin Solid Films, 2006, 494(1/2):47-52.
- [7] Mittiga A, Salza E, Sarto F, et al. Heterojunction solar cell with 2% efficiency based on a Cu₂O substrate [J]. Appl. Phys. Lett., 2006, 88(16):163502-1-3.
- [8] Minami T, Nishi Y, Miyata T, et al. High-efficiency oxide solar cells with ZnO/Cu₂O heterojunction fabricated on thermally oxidized Cu₂O sheets [J]. Appl. Phys. Exp., 2011, 4(6):062301-1-3.
- [9] Hsueh T, Hsu C L, Chang S J, et al. Cu₂O/n-ZnO nanowire solar cells on ZnO: Ga/glass templates [J]. Scripta Mater., 2007, 57(1):53-56.
- [10] Fariza B M, Sasano J, Shinagawa T, et al. Light-assisted electrochemical construction of (111) Cu₂O/(0001) ZnO

heterojunction [J]. Thin Solid Films, 2012, 520(6):2261-2264.

- [11] Yuhas B D, Yang P D. Nanowire-based all-oxide solar cells [J]. J. Am. Chem. Soc., 2009, 131(10):3756-3761.
- [12] Hussain S, Cao C, Nabi G, et al. Effect of electrodeposition and annealing of ZnO on optical and photovoltaic properties of the p-Cu₂O/n-ZnO solar cells [J]. Electrochim. Acta, 2011, 56(11):8342-8346.
- [13] Musselman K P, Wisnet A, Iza D C, et al. Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells [J]. Adv. Mater., 2010, 22(3):254-258.
- [14] Duan Z Q, Pasquier A D, Lu Y C, et al. Effects of Mg composition on open circuit voltage of Cu₂O-Mg_xZn_{1-x}O heterojunction solar cells [J]. Sol. Energ. Mat. Sol. C, 2012, 96:292-297
- [15] Rai B P. Cu₂O solar cells: A review [J]. Solar Cells, 1988, 25(3):265-272.

《发 光 学 报》

----EI 核心期刊 (物理学类; 无线电电子学、电信技术类)

《发光学报》是中国物理学会发光分会与中国科学院长春光学精密机械与物理研究所共同主办的中国物理学会发光分会的学术会刊。该刊是以发光学、凝聚态物质中的激发过程为专业方向的综合性学术刊物。

《发光学报》于1980年创刊,曾于1992年,1996年,2000年和2004年连续四次被《中文核心期刊要 目总览》评为"物理学类核心期刊",并于2000年同时被评为"无线电电子学、电信技术类核心期刊"。 2000年获中国科学院优秀期刊二等奖。现已被《中国学术期刊(光盘版)》、《中国期刊网》和"万方数据资 源系统"等列为源期刊。英国《科学文摘》(SA)自1999年;美国《化学文摘》(CA)和俄罗斯《文摘杂志》 (AJ)自2000年;美国《剑桥科学文摘社网站》自2002年;日本《科技文献速报》(CBST,JICST)自2003年 已定期收录检索该刊论文;2008年被荷兰"Elsevier Bibliographic Databases"确定为源期刊;2010年被美国 "EI"确定为源期刊。2001年在国家科技部组织的"中国期刊方阵"的评定中,《发光学报》被评为"双效期 刊"。2002年获中国科学院2001~2002年度科学出版基金"择重"资助。2004年被选入《中国知识资源 总库·中国科技精品库》。本刊内容丰富、信息量大,主要反映本学科专业领域的科研和技术成就,及 时报道国内外的学术动态,开展学术讨论和交流,为提高我国该学科的学术水平服务。

《发光学报》自2011年改为月刊, A4 开本, 144 页, 国内外公开发行。国内定价: 40 元, 全年480元, 全国各地邮局均可订阅。《发光学报》欢迎广大作者、读者广为利用, 踊跃投稿。

地	址:长春市东南湖大路3888号	国内统一刊号: CN 22-1116/04
	《发光学报》编辑部	国际标准刊号: ISSN 1000-7032
邮	编:130033	国内邮发代号:12-312
电	话:(0431)86176862,84613407	国外发行代号: 4863BM
E-n	nail: fgxbt@126.com	http://www.fgxb.org